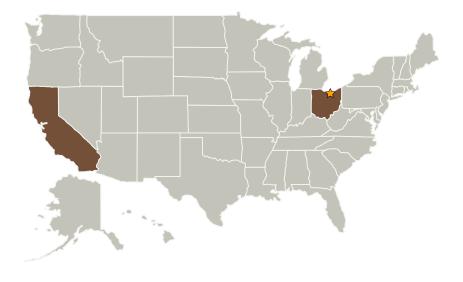
Multi-Mission SDR, Phase II


Completed Technology Project (2007 - 2009)

Project Introduction

Wireless transceivers used for NASA space missions have traditionally been highly custom and mission specific. Programs such as the GRC Space Transceiver Radio System (STRS) seek to abstract the radio waveform from the hardware platform itself; this is meant to improve flexibility and promote component and subsystem reuse. In this Phase II effort Toyon proposes to perform work that will advance the state of the art in reconfigurable wireless transceivers in order to help realize the vision of STRS. Specifically, we propose to develop a modular, but highly integrated, digital and analog signal processing platform along with a standards-compliant waveform. The spaceready reconfigurable radio will serve a range of NASA missions and can be easily modified or enhanced for future needs. The RF front-end will be direct conversion with high integration of the frequency translation subsystems. For digital processing, we will pursue a system-on-a-chip (SoC) design with both reconfigurable logic and a soft-core processor implemented in a radiationhardened Xilinx FPGA and PROM. The entire system architecture will leverage an EXP board-to-board connector design developed in Phase I. This system concept was validated in Phase I through Toyon's demonstration of a fullyfunctional packet-based 500 kbps waveform. In Phase II Toyon will pursue development of a waveform that is standards-based in order to further promote reuse and interoperability. Specifically, Toyon will develop a baseline implementation of the IEEE 802.16a standard. In addition to physical layer connectivity, such a waveform is well suited to IP-based networking, easing integration and increasing portability.

Primary U.S. Work Locations and Key Partners

Multi-Mission SDR, Phase II

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Transitions	2	
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Multi-Mission SDR, Phase II

Completed Technology Project (2007 - 2009)

Organizations Performing Work	Role	Туре	Location
Glenn Research Center(GRC)	Lead	NASA	Cleveland,
	Organization	Center	Ohio
Toyon Research	Supporting	Industry	Goleta,
Corporation	Organization		California

Primary U.S. Work Locations	
California	Ohio

Project Transitions

December 2007: Project Start

December 2009: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - □ TX06.2 Extravehicular Activity Systems
 - □ TX06.2.3 Informatics and Decision Support Systems
 ☐ TX06.2.3 Informatics
 ☐ TX06.2.3 Informatics

